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Preface

Under Contract No. F49620-C-89-0038, NTNF/NORSAR is conducting resear(h
within a wide range of subjects relevant to seismic monitoring. The emphasis of th,,
research program is on developing and assessing methods for processing of dal
recorded by networks of small-aperture arrays and 3-comiponent stations, for ev,,its
both at regional and teleseismic distances. In addition, more general seismologicad
research topics are addressed.

Each quarterly technical report under this contract will present one or sever l
separate investigations addressing specific problems within the scope of the state-
ment of work. Summaries of the research efforts within the program as a whole will
be given in annual reports.

This Scientific Report No. 2 presents a manuscript entitled "Three recent larger
earthquakes offshore Norway", by Roger A. Hansen, Hilmar Bungum and Alfred
Alsaker. Topics addressed in the paper include focal mechanisms, regional wave
attenuation, modelling using synthetic seismograms and tectonic implications.
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Three Recent Larger Earthquakes Offshore
Norway

by Roger A. Hansen, Hilmar Bungum and Alfred Alsaker

NORSAR, P.O.3ox 51, N-2007 Kjeller, Norway

ABSTRACT

Three earthquakes of magnitude around 5 occurred offshore western Norway on

5 February, 1986, on 8 August, 1988, and on 23 January, 1989. These earthquakes,

representing the highest seismic activity level in this area for at least 30 years,

were all felt by people over most of southern and central Norway. Focal mechanism

solutions for these earthquakes indicate thrust faulting along N-S to NNE-SSW

striking fault planes, in response to NW-SE compressional stress, most probably of

plate tectonic origin.

A number of high-quality digital recordings of the ground motions at various dis-

tances from these and other recent earthquakes in Norway have shown that source

spectral as well as wave attenuation characteristics in this area are reasonably con-

sistent with what has been derived from other intraplate areas.

INTRODUCTION

The seismicity of the Norwegian Continental Shelf can be characterized as mod-

erate, since no destructive earthquakes are known to have occurred there in histor-

ical times. The seismic activity is, however, high enough for earthquake hazards

and loads to be considered in the design of fixed installations offshore in Norway

(Norwegian Petroleum Directorate, 1987).

In order to support the development of our knowledge about the seismic activity

in these areas, the petroleum industry has contributed over the last few years to the
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Hansen et al.: Three Recent Larger Earthquakes Offshore Norway 2

operation of seismic surveillance networks all along Western and Northern Norway.

One of the most inportant of these is the Northern Norway Seismic Network, SEIS-

NOR, with stations from 620 to 70N. When considering also the large investments

in equipment in Norway for the purpose of more global earthquake and explosion

monitoring, this provides an excellent basis for investigation of what now possibly

may represent a recent surge in seismic activity.

The purpose of the present paper is to provide a seismological analysis of three

of the largest local earthquakes recently recorded by these new installations, to

discuss the tectonic significance of these events, and finally to discuss some of their

engineering implications. The level of detail of this paper is influenced by its intent

to address a wide aidience. When deemed necessary, references are made to other

reports or papers that treat the topics in more detail.

REGIONAL SEISMICITY

Tectonic processes are long term, and a study of such processes is therefore aided

by a combined analysis of historical and recent earthquake activity. In the case of

Norway, the prime motivation for such studies has been the need for improved

seismic hazard analyses, resulting in a variety of scientific studies which all have

contributed to our knowledge of seismicity and seismotectonics in Norway and its

surrounding offshore areas (Bungum and Selnes, 1988).

A seismicity map for Norway is shown in Fig. 1. This map includes an integration

of historical as well as more recent earthquakes. The main seismotectonic features

as seen from the figure are as follows (Bungum et al., 1989):

" South of 63°N, the seismicity follows the Viking Graben and the coastal areas

on each side of the Horda Platform, with the zones coming together at around

62 0N.

" Further north (around 64"N), the seismicity divides again to either side of the

Trondelag Platform, with the Kristiandsund-Bodo Fault Complex on the off-

shore side and the More-Trondelag Fracture Zone and the Rana Fault Complex

on the coastal side.

" In the Lofoten area (around 67 0 N), the zones join again, while further north
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another zone runs in a northwesterly direction between the Lofoten Basin and

the Barents Sea.

e In a broad sense, the seismicity thereby follows the (passive) continental mar-

gin over a very long distance.

With some exceptions (tHavskov et al., 1989) it has been found (Bungum and

Selnes, 1988) that the seismicity in these areas has been reasonably stable since

systematic macroscismic data collection began in the 18SO's (Muir Wood et al.,

1987). Fig. 2 shows in this respect a teinloral overview of the largest earthquakes

in Norway and surrounding areas, beginning with a A!5 5.S eart hquake in Nordland

in 1819. Since about 1S85, the coverage is considered rea-sonably complete down

to Ms 4.5, showing two time periods with somewhat higher earthquake activity,

namely a 20 year period around the turn of the century, and a five year period at

the end of the 1950's.

Our focus in the following will be on investigating the three largest earthquakes

at the end of the 1980's in more detail.

LOCATIONS, FELT EFFECTS, AND MAGNITUDES

Detailed parameters for the three earthquakes are given in Table 1, while loca-

tions, as well as maps of felt area contours for intensities V, IV and III are shown in

Figs. 3-5. The hypocenters are computed in each case from a large number of local

and regional instrumental recordings of P and S waves (4G, 68 and 34 for Events 1, 2

and 3, respectively), giving epicentral standard errors on the order of 4, 3 and 2 ki.

These uncertainties are smaller than what is typically found for most of the smaller

earthquakes located in the same general area during the last decade (Bungum et

al., 1986). For earlier instrumentally located events, such as many of those shown in

Fig. 1, uncertainties could easily be of the order of 10-20 km (Husebye et al., 1978),

and even larger for some of the elder macroseismically located historical earthquakes

(Muir Wood et al., 1987).

In Table 1 focal depths for Events 1 and 2 are indicated only to lower crust,

based on indications from the hypocentral solutions using the computer program

HYPOELLIPSE (Lahr, 1984). In addition, about ten reported depth phases (pP
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and sP) for Event 2 at teleseismic distances indicate a focal depth between 21 and

27 km. For Event 3, some near-field recordings provide a precise estimate of about

26 km quite close to (possibly just below) the crust-mantle interface (Klemperer,

1988). Focal depths of this order (15-35 km) are commonly observed in Norway

(Bungum et al., 1989), and there is now increasing evidence for focal depths near

the Moho discontinuity also in many other intraplate areas (Chen, 1988).

The felt area information as presented in Figs. 3-5 is the best source of inforiiia-

tion about the size of earthquakes when instrumental data are not available. It is

still important to compute magnitude in this way for recent earthquakes in order to

tie them in to the historical seismicity. As a part of a major reanalysis of historical

seismicity in Norway, Muir Wood and Woo (1987) developed the following relation-

ships between surface wave magnitude Ms and felt areas (in kin2 ) corresponding to

intensity levels III and IV:

Ms = 0.95 + 0.69. logAttt +6 • 1O-7All, (1)

Ms = 1.57 + 0.63. logAtv + 7. 10- Aiv (2)

These relations were developed on the basis of some calibration events for which

both instrumentally determined Ms and felt area estimates were available. In using

these relations with felt areas as estimated from Figs. 3-5 we find, as shown in

Table 1, Ms values of 4.9, 5.3 and 5.1 for the three events, respectively. Such Ms

magnitudes, from felt areas, have been derived also for all of the larger earthquakes

shown in Figs. 1-2, insuring that the whole catalogue is internally consistent.

Also given in Table 1 are some other magnitude estimates for these earthquakes.

As one might expect, global network mb estimates are higher than our Mfs values,

while moment magnitudes Mw are more consistent.

FOCAL MECHANISM SOLUTIONS

Focal mechanism solutions for two of the three earthquakes proved to be quite

difficult to obtain using the conventional first motion analysis. There either were

not enough data to well constrain the nodal planes (as was the case for Event 1), or

errors were introduced in the take-off angles from the source due to misinterpretation
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of the travel path of the seismic phase because of the complicated geometry of the

crust-mantle interface (as was the case for Event 3).

Since Events 1 and 3 were found to have produced fairly simple and well recorded

long period surface waves, an approach of source mechanism retrieval was adopted

that combines broad-band waveform modelling with the more conventional first

motion analysis. The method consists of low pass filtering the broad-band records

from the NORESS array (NRS) and Kongsberg (KONO) to emphasize the lo'.

frequency waves up to about 6 seconds period and then matching the waveforms to

synthetic seismograms computed for a given carth structure and source nechanisiM.

Green's functions were computed using the Locked Mode Approximation methi,,t

of Harvey (19S1) for a crust-mantle structure derived from Mykkeltveit (1980) for

the crust and Stuart (1978) for the upper mantle. A more detailed description of

the waveform modelling procedure is beyond the scope of this paper and will be

presented in a subsequent paper (Hansen, 1989).

The results of this modelling are illustrated in Fig. 6 and 8 for Events 1 and

3, respectively. Three-component seismograms recorded at NRS for each event are

shown after filtering and rotation to vertical, radial, and transverse components.

The corresponding synthetic seismograms are shown just below the observed ones.

The method was first applied to Event 3 where the best results were obtained. To

the right of Fig. 6 and 8 are the focal mechanism drawings (lower hemisphere stere-

ographic projections) for the nodal planes obtained from the waveform modelling

together with the first motion data. It is obvious that the first motion data are

to some extent discordant, either due to incorrect readings or false interpretations.

Experimenting with different velocity models for location, and varying the source

depth failed to improve the interpretation of the first motion data. However, they

were useful in helping to discriminate between say two different waveform solutions

and serve to supply constraints on further interpretation of velocity models in the

area.

Due to the complexity of the crust and upper mantle structure in the vicinity

of the earthquakes, it was necessary to explore the effect of the assumed velocity

structure on the low frequency waveform modelling. Since we are observing phases

with wavelengths on the order of 20 kilometers and longer, much of the complexity

effecting the high frequency first motion data is smoothed out. The structures
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used for computing cynthetic seismograms therefore reflected the average, and more

homogeneous, properties sampled along the majority of the travel path from the

earthquake to the receiving stations. By observing the change in the synthetic

waveforms as a function of structural model and earthquake source depth it was

verified that the solutions for the focal mechanisms and source depths are quite

robust. Variations in the compression and tension axes of the focal sphere were

found to be less than about 5 degrees due to changes in velocity models for a single

station solution, and were improved with the inclusion of a second three-component

station (KONO). It was also found that source depths could be verified from the

modelling to a precision of about ± 5 ki.

For Event I (Fig. 6), the waveform fit at station NRS is excellent except for a

time shift in the transverse component. It is seen from the focal mechanism plot that

the fault plane solution would be difficult to obtain from first motion data alone.

In fact, an earlier interpretation of the first motion data of this event indicated a

normal fault with a near vertical axis of maximum compression. However, the wave-

form modelling shown here for this event completely rules out this type of solution.

Instead, the solution for this earthquake clearly indicates oblique thrust faulting in

response to a regional stress field exhibiting NW-SE horizontal compression.

For Event 2, a similar amplitude modelling has not been feasible because of the

very different character of the long period waveforms as illustrated in Fig. 7. The

complex seismograms are likely a result of the rapidly changing crustal structure

between Event 2, which is the farthest out to sea, and the seismometer located

in south-eastern Norway (Hamar and Hjelle, 1984). In this case, a solution using

first motions only is given in Fig. 7, where a combination of local and teleseismic

data helps in constraining the nodal planes. The solution (see Table 1) shows,

as for Event 1, a thrust mechanism in response to NW-SE compression, but with

somewhat different faulting paraneters.

It is of interest here to point out that such a reliable fault plane solution is

only possible because of the newly installed stations in Northern Norway. It can

be seen from Fig. 7 that the northeasterly striking plane is only constrained by

the stations whose azimuths vary from about 400 through about 90*. These are

the stations of the SEISNOR network and the ARCESS array. The sense of first

motion changed from dilatation to compression through the middle of this network
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of stations, allowing for a well constrained fault plane solution.

For Event 3 (Fig. 8), the solution again indicates thrust faulting in response to

NW-SE compression. Since there were two seisimic stations within about 50 krn

from the earthquake, both P and S type scsmic phases were usable for constraining

the depths of the main shock and several aftershocks. Since the locations of these

aftershocks indicate a plane dipping to the southeast it is likely that the fault plane

for the main shock is the one with a northeast strike dipping to the southeast.

SOURCE SPECTRA AND SEISMIC MOMENTS

Source displacement spectra are obtained in general by first COnI1liting observed

displacement spectra, and then correcting for path effects (geometrical spreading

and anelastic attenuation). In order for such estimates to be reliable they need

near-field data recorded over a broad band of frequencies, and with a high dynamic

range. Reliable near-field data are scarce anywhere, and in particular in intraplate

areas such as Norway. We do, however, have recording systems available that fulfill

the other requirements. These are one three-component broad band (intermediate

period) station at NORESS (all three events) and two strong-motion instruments

(accelerographs) at Molde and Sulen (Event 2 only).

Given that we have independent information on the sense of faulting, the source

spectrum can be interpreted in terms of "standard" earthquake source models. The

most commonly used source model is the "Brune" model (Brune, 1970; 1971), de-

veloped from a study of shear waves radiated by a sudden drop in shear stress over

a circular region in an infinite elastic solid. Here the spectrum is characterized by a

fairly simple shape, where the parameters of interest are a low frequency asymptote

fl0, a corner frequency f 0 and a high frequency roll-off that is linear with a slope

proportional to w2 (12 dB/octave).

The observed displacement spectra u, estimated here were obtained by first ro-

tating the time series to yield the radial and transverse components, followed by

Fourier transforming, highpass filtering (to avoid noise problems with the inverse

FFT to obtain ground d&zplacemcnt time series), correcting for the instrument re-

sponse, and then integrating to displacement (from acceleration or from velocity,

depending on type of instrument).
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From the observed displacement spectrum, the source spectrum as a function of

angular frequency w = 27rf is estimated simply by correcting for path effects all the

way back to the source, as follows:

M = 47rpv 3(GPS)-'f, (3)

where p is the density of the material, v is the seismic velocity of the wave being

analyzed, G accounts for geometrical spreading (spherical up to 100 kin, then cylin-

drical), S is a factor that accounts for the free surface amplification (2.0), radiation

pattern coefiicient (0.6), and possible vectorial partitioning of energy (v'2-), and P

is a path coirection term that includes anelastic attenuation:

P = exp(wR/vQ) (4)

where R is epicentral distance and Q -- Q(f) is a frequency dependent quality factor.

Two quite different relationships have previously been used to account for anelastic

attenuation in Norway, one from Sereno et al. (1988) and the other from Kvamme

and Havskov (1989). Both relationships were based on local and regional recordings

of smaller earthquakes from Norway and surrounding areas. More recently, a new

relationship has been developed by Dahle et al. (1989), based on a large amount

of intraplate strong motion recordings from earthquakes with magnitudes more ap-

propriate for the present application. These three relationships are as follows (the

last one slightly simplified here):

Q = 560f ° 26  (Sereno et al., 1988) (5)

Q = 120f' (Kvamrnme and Havskov, 1989) (6)

Q = 360 + 103fm
'2 (Dahle et al., 1989) (7)

It can be seen from these equations that (7) is reasonably close to (6) for high

frequencies and quite close to (5) for low frequencies. In applying these relationships

in Equation (3), however, we find that frequency dependencies as given by (6)

or (7) are needed in order to get source spectral slopes consistent with common

models (e.g. Chael and Cromer, 1988), Q-values as given by (7) are needed at high
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frequencies in order to get consistent source spectral levels from observations at

different distances, while Q-values between those given by (6) and (7) are needed in

order to get consistent estimates of seismic moments A relatio-ship averaging the

ones above has therefore been used in the present anallsis;:

Q = 90 + ,f0J' 2  (8)

In applying equation (8) in equations (3) and (4), certain parameters quantify-

ing the source strength and spatial extent can be estimated by simply reading the

spectral amplitude and the corner frequency levels. The low frequency asymptote

here is in fact the seismic nionient A!0 , which is the strength of the equivalent double

couple source.

The corner frequency fo (inversely proportional to source radius) yields a mea-

sure of the size of the fault surface that moved during the earthquake. The Brune

model assumes this fault surface to be circular, with a radius given by a ratio pro-

portional to the wave speed v divided by the corner frequency f 0 .

The Brune source model also allows for the estimation of the stress drop (or

amount of accumulated strain-energy released by the earthquake) from the parame-

ters of seismic moment and fault area. Other estimates such as amount of slip on the

fEult can be calculated from simple formulae. Further, estimates of energy radiated

by the source can be made from the squared velocity trace and then related to an

apparent stress estimate for the event (Aki, 1966; Wyss, 1970). Finally, to better re-

late these spectral parameterizations to more commonly used magnitude estimates

the more robust measure of absolute strength of the source given by the seismic

moment M (in Newton-meters), has been expressed as a moment magnitude, Mw,

by this simple formula of Hanks and Kanamori (1979):

Mw = 2/3 logMo - 6.0 (9)

By analyzing the S (L.) phases observed from the three events at different

stations in this way, we have obtained source displacement spectra as shown in

Figs. 9-11 and ass-ociated source parameters as given in Table 1. To be consistent,

the interpreted Brune source spectra are fitted by eye using the NORESS data only

(in Figure 10, spectra from Molde and Sulen are also plotted indicating a somewhat

lower low-frequency level), and with an w2 slope at higher frequencies. The resulting
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moment levels and corner frequencies are given in Table 1 along with the computed

stress drops, source radii, and average fault displacements. It is interesting to note

that the stress drops average at 10 MPa, a value which is commonly observed.

It should be noted here that an essentially unresolved discussion still exists with

respect to whether or not stress drop is higher for earthquakes in intraplate areas

than in plate margin areas (Kanamori and Anderson, 1975; Somerville et al, 1987),

,i (I with respect to whether or not stress drop is independent of seismic moment

(Nuttli, 1983).

It should be emphasized that this estimation of source displacement and thereby

its low frequency asymptote M0 is very dependent on the models used for anelastic

attenuation (Q), in particular for low frequencies. Even though some Q models

already have been published for Norway as discussed above, a lot more research

is needed until a model is established which gives us sufficiently reliable seismic

moment estimates when obtained from data recorded at regional distances over say

100 km.

The model used for geometrical spreading is also important (cf. Street et al,

1975; Herrmann and Kijko, 1983), because the spreading term, even up to distances

of several hundred kilometers, contributes much more to the total attenuation than

the anelastic term, and also because different spreading models used could make a

large difference at larger regional distances. For most models (for Lg waves) the

latter point is reduced to a question of at what distance (100 km in the present

study) the geometrical spreading changes from spherical to cylindrical, which in

turn depends on crustal structure and focal depth. The answer to this question is

not firmly established for any area. In Q studies, some assumption on geometrical

spreading is usually a prerequisite, and therefore strongly influences the results. It

is therefore quite encouraging that we have obtained such consistent results between

the moment magnitudes and the various estimates of surface wave magnitudes for

these events.

TECTONIC IMPLICATIONS

The three earthquakes studied here are among the largest ones in this area

for more than 100 years (Ambraseys, 1985; Muir Wood et al., 1987; Bunguni and
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Selnes, 1988), as seen from Figs. 1-2. Specific events in the sam," magnitude range

to compare with are the following:

Year/date Lat.(°N) Long.(°E) M.

1866/03/09 65.2 6.0 5.7
1892/05/15 61.4 5.1 5.2
1895/02/05 65.0 6.0 5.3
1955/06/03 61.9 4.1 5.2

Of these earthquakes, which all are analyzed in detail in terms of felt effects, it

seems that the one in 1866 is defihitcly greater than tlt rc,,nt 0110s, and possibly

also the one in 1895 (see also Anibraseys and Ehashei, 19" , 'I le '},tlmer two are

closer in size, and by comparing felt area inforimation i! is t1.; rsihl that the 1955

event is indeed smaller (Ms 5.2 for that event is all instrumental value). In that

case, the 1988 More Basin earthquake is the largest one in this part of the Norwegian

Continental Shelf since 1895.

The focal mechanism solutions for Events 1-3 all have significant reverse (thrust)

components, in response to NW-SE compression. This is quite consistent with the

direction of the "ridge push" force which now often is assumed to be responsible for

the regional stress field in these areas (cf. Gregersen and Basham, 1989; Bungum

et al., 1989). The fact that three recent larger earthquakes, with their greater

regional tectonic significance, are so consistent with this model is indeed a very

strong evidence in its support.

Double couple focal mechanism solutions such as those obtained here leave an

ambiguity with respect to which of the two fault planes is the actual rupture plane.

This ambiguity can be resolved only by use of additional, normally geologic, data.

Such data in this case indicates in general a predominance of NS or NE-SW striking

faults, which in fact does not exclude any of the nodal planes in Figs. 6-8. A

more detailed geological analysis of the epicentral areas is therefore needed in order

to resolve this question. For Event 3, however, the lineation of aftershocks (as

mentioned above) clearly suggests the southeast dipping plane.

It is usual to find that earthquakes of the size studied here are followed by a

large number of aftershocks ranging in magnitude from about one unit lower than

the main shock and down to the minimum detection level. Such aftershocks were

observed for both Eve... 1 (Chael and Cromer, 1986) and for Event 3, while none

were found for Event 2 (8 August 1988). For Event 2, the signal to noise ratio for
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the earthquake, combined with some simple scaling relations onl earthquake spectra

(e.g. Evernden et al., 1986), tell us that aftershocks as low in magnitude as 2.5 to

3.0 should have been detected if they occurred.

Another example by contrast is the Meloy sequence of earthquakes (Bungum et

al., 1979). This sequence produced literally thousands of earthquakes over a time

period of a few months and then rapidly decayed away. However, the largest event

in the Meloy sequence was only 3.2, which characterizes a swarm rather than a main

shock/aftershock sequence.

Since the faulting mechanisms as well as the focal depths in these three cases are

reasonably similar, it is likely that the lack of aftershocks for Event 2, the largest of

the three, is ticd to differences in the local geological conditions in tile More Basin.

For example, in the More Basin, tp to about 10 km of sediments lie above the

basement rocks (Hamar and Hjelle, 1984). The other two events occurred near the

areas where the sedimentary basins are separated from the crystalline massifs on

the landward side. Also of significance to Event 2 is that the direction of horizontal

compression obtained from the focal mechanism, in contrast to Events 1 and 3,

deviates slightly from the direction of expected ridge-push forces.

ENGINEERING IMPLICATIONS

The Norwegian Continental Shelf is characterized by a moderate level of seis-

micity (Bungum et al., 1989). This means that the seismicity is high enough to be

of concern in the design of offshore instalations (Norwegian Petroleum Directorate,

1987) while at the same time low enough to create special problems in the estimation

of earthquake hazards and loads for this area (Bungum and Dahle, 1989).

One of the main sources of uncertainty in this respect is the model used for wave

attenuation, especially in the near field. The classical way of obtaining such models

for attenuation relations is through a regression analysis of strong motion data with

a sufficient coverage in magnitude and distance. Since large earthquakes are rare

in Norway, with no known destructive earthquake, this approach is not possible

here. By including data from other and tectonically comparable areas, however, the

approach is viable, as shown recently by Dahle et al. (1989).

In a recent major Norwegian earthquake hazard study (Bungum and Seines,
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1988), a solution to this problem was sought in terms of a combination of attenuation

relations developed from data recorded in tectonically similar areas, and relations

developed on a more theoretical basis.

An interesting approach for a further improvement in attenuation models is

now available in terms of the so-called "calibrated theoretical" method of ground

motion predictions based on a random-vibration approach (e.g., Boore and Atkinson,

1987; Toro and McGuire, 1987). In this approach, the observed ground motion

spectra are predicted based on a simple model for the source spectrum, and in a way

almost inversely to what was done above in the computation: of source displacement

spectra. One of the advantages with this approach is that it can utilize all availablc

seismometer rccordings from earthquakes of small and moderate magnitudes in the

development of parameters for the prediction models. What is needed is a correction

for instrument response, a conversion from displacement to acceleration, and the

subsequent computation of Fourier spectra and/or response spectra.

An example of such Fourier spectra is given in Fig. 12, where acceleration spectra

are computed (units of m/s) for NORESS three-component broad band recordings

of Event 2 (8 August 1988). The figure also includes noise spectra as well as theo-

retical predictions using the random-vibration approach based on parameters given

in the figure caption. In spite of the fact that these parameters have been derived

independently of the event for which the predictions are computed, the fit is almost

perfect. This should be considered coincidental, however, since the parameters used

have not been derived through a systematic analysis and therefore not necessarily

would predict amplitudes equally well for other earthquake magnitudes and wave

paths.

One of the reasons why Event 2 is important within this context .)f ground

motion predictions is that the event is large enough to provide valuable constraints

on the possible non-linearity of the moment/magnitude relations, as well as for

other parameters that scale with magnitude. At the same time, the earthquake also

represents the first case of well-recorded accelerograms from a local earthquake of

this size in Norway (unfortunately, the accelerometers were not in operation at the

time of Event 3). As such, the data also contributes importantly in the extensive

strong motion regression analysis by Dahle et al. (1989).

A comparison between the Event 2 observed ground motions with what is pre-
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dicted by the Dahle et al. (1989) wave attenuation model is shown in Fig. 13. The

parameter used there is peak ground acceleration PGA (at 5 percent damping), his-

torically one of the most important ground motion parameters used in earthquake

engineering. The curve is generated for an Ms 5.3 earthquake, and the two points

are PGA values from Molde and Sulen. It is seen from the figure that the observed

points are somewhat below the model predictions of the order of one standard de-

viation.

While PGA represents an asymptotic value of acceleration for high frequencies,

the ground motion values for lower frequencies are often of greater importance for

the kind of engineering applications usually found on the Norwegian Continental

Shelf (with periods all the way up to 6 seconds in some cases). The parameter most

widely used in that case is the pseudo-relative velocity PSV, which describes (as

does PGA) the response of a single degree of freedom oscillator with some level of

damping (usually around 5 percent) to the ground motion.

It should be kept in mind here that these response spectral velocities, or pseudo-

relative velocities PSV, are distinctly different from Fourier spectra, which describe

the ground motion itself. Both, however, come in units of velocity provided that

the input is in units of acceleration.

Such acceleration records, in processed form, are shown in Fig. 14 for Event 2

(8 August 1988), as recorded at the Molde and Sulen stations. The processing here

(eg., Shyam Sunder and Connor, 1982) includes instrument corrections as well as a

very careful bandpass filtering for the purpose of signal-to-noise ratio enhancement.

At the bottom of Fig. 14 the PSV spectra for the Molde and Sulen accelerometer

recordings are shown together with predictions (smooth curves) based on the Dahle

et al. (1989) attenuation mondel. The fit between the observed and the predicted

spectral forms is good, with predictions again being somewhat higher than obser-

vations. This deviation, however, is not large enough to indicate any systematic

deviation between earthquakes in Norway and other intraplate areas, since only one

event is represented in the comparison, and since a very large scatter is a general

characteristic of such data.

In conclusion, these analyses of the largest earthquakes in Norway far at least 30

years has shown that inferred stress directions (NW-SE compression) are consistent

with those expected from the "ridge-push" effect, and that source spectral shapes,
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stress drops, and levels of ground motion excitation are reasonably consistent with

what has been observed in other intraplate areas.
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Event No. 1 2 3
Year/Month/Day 1986/2/b 1988/8/8 1989/1/23
Latitude (*N) 62.71 63.68 61.97
Longitude( °N) 4.69 2.44 4.42
Focal depth (kin) 15-30 20-30 24-28
Felt area Aiv (1000 kin2 ) 140 320 245
Ms (felt area Anv) 4.9 5.3 5.1
Felt area A111 (1000 kin 2 ) 310 580 460
Ms (felt area Ali,) 4.9 5.3 5.1
M6 (NEIS) 5.0 (4) 5.7 (70) 5.5
Als (NEIS) 4.4 (6) 5.3 (13) 5.1
Seismic moment (1016 Nm) 1.3 8.0 6.0
Mw (moment magnitude) 4.7 5.3 5.2
Corner frequency (1Hz) 1.4 1.0 1.0
Stress drop (MPa) 5.5 12.4 12.3
Source radius (kin) 1.0 1.4 1.3
Average slip (cm) 12 39 35
P-axis strike (0) 303 277 124
P-axis plunge (*) 10 5 8
T-axis strike (0) 198 31 239
T-axis plunge (0) 55 77 72

Table 1
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Table Captions

Table 1: Source parameters for the three earthquakes analyzed in this paper: Event

number; date; latitude; longitude; focal depth; felt area and Ms (from felt area) for

MSK intensity levels IV and III; network determinations of mb and Ms from the

U.S. National Earthquake Information Service NEIS (number of stations in paren-

theses); seismic moment; moment magnitude; corner frequency, stress drop (iMPa

- 10 bars), source radius, and average slip across the fault, based on a Brune source

model; P-axis (maximum compression) strike and i)hige; and T-axis (mnininitini

compression) strike and plunge.
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Figure Captions

Fig. 1: Earthquakes 1800-1989 in Norway and surrounding areas. The event lo-

cations for 1800-1954 are mostly based on macroseismic (felt) data, supplemented

with some instrumental records from a sparse international network of stations,

for the time period 1955-1979 the locations are mostly instrumental, supplemented

with some macroscismic data, while the time period 1980-1989 has locations mostly

based on data from regional and local seismological networks (Bungum et al., 1989).

Major faults, fracture and graben systems are indicated on the figure (Bunguin and

Selnes, 1988), and the heavy line from south to north offshore indicates 500 m water

dcpth, corresponding roughly to the edge of the continental shelf. Earthquakc sym-

bol size is proportional to magnitude as shown by the legend, and different symbols

are used for the three time periods.

Fig. 2: Time-magnitude distribution of earthquakes in the area covered in Fig. 1

(mid-Atlantic ridge and Lofoten Basin excluded), and for events of Ms 4.5 and

above. The three events reported on in this study are those numbered 1 through

3 on the right hand side, while other larger earthquakes include: 1819, Ms 5.8,

Northern Norway; 1866, Ms 5.7, Western Norway; 1894, Ms 5.4 Lofoten Islands;

1895, Ms 5.3, Western Norway; 1904, Ms 5.4, Oslo Fjord; 1927, Ms 5.3, Northern

North Sea; and 1955, Ms 5.2, Western Norway.

Fig. 3: Macroseismic map for Event 1, 5 February 1986. The epicenter is indicated

by a black dot, felt area contours for intensity levels V, IV and III (MSK scale) are

shown by dashed lines, and a triangle shows the location of the NORESS station

in southeastern Norway (used in the source spectral analysis in Fig. 6). The heavy

line offshore indicates a water depth of 500 m (shelf edge), with 1000 and 2000 m

contours further out at sea. The macroseismic data for this and the other two events

reported on here have been collected and kindly provided to us by the Seismological

Observatory of the University of Bergen (P. Optun), while the interpretations here

are those of the authors.

Fig. 4: Macroseismic map for Event 2, 8 August 1988. Symbols and legends are
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as for Event 1 (Fig. 3), and in addition the locations of the Molde and the Sulen

accelerometer stations, used in the present analysis of Event 2, are also shown (see

also Ambraseys and Elnashei, 1988).

Fig. 5: Macroseismic map for Event 3, 23 January 1989. Symbols and legends are

as for Event 1 (Fig. 3).

Fig. 6: Focal mechanismn solution from waveform modelling, Event 1, 5 February

1986. The left frame shows three components (vertical, radial and transverse) of

NORESS broad band data together with theoretical seismograms immediately be-

low each trace, while the right frame shows the focal mechanism solution used in

the waveform modelling. Together with the solution, plotted in a lower hemisphere

stereographic projection, are shown (but not used in the analysis) first motion polar-

ity data, where black squares and open circles indicate compressions and dilatations,

respectively. Below the solution are given the parameters for the nodal planes, for

the P and T axes (maximum and minirri~n coinressive stress), for the greatest hor-

izontal compression and ten ion, and for the relative size of the horizontal deviatoric

stress (for a closer explanation of these parameters see Havskov and Bungum, 1987),

Fig. 7: Focal mechanism solution from first motion data, Event 2, 8 August 1988.

Symbols and legends are as for Event 1 (Fig. 6), with the important difference that

no waveform modelling is done in this case (for reasons discussed in the main text).

The solution therefore obtained solely on the basis of the first motion polarity data.

Fig. 8: Focal mechanism solution from waveform modelling, Event 3, 23 January

1989. Symbols and legends are as for Event 1 (Fig. 6), the only difference being that

first motion data not read by the authors are indicated by plus and minus signs for

compressions and dilations, respectively.

Fig. 9: Source displacement in Nm (I Nm = 10' dyne cm) vs. frequency (in Hz) for

Event 1, 5 February 1986, based on NORESS (epicentral distance 428 kin) three-

component (vertical, radial, and transverse) broad band (IP) and high-frequency

(HF) data. The heavy line indicates the "Brune" source spectrum fit by eye under
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the restriction of an w2 slope above the corner frequency. The spectrum indicates a

seismic moment of 1.3.1016 Nm, and a corner frequency of 1.4 Hz (See Table 1).

Fig. 10: Source displacement vs. frequency for Event 2, 8 August 1988, based on

NORESS (578 kin) three-component broad band (IP and HF) data and Molde (288

km) and Sulen (318 km) accelerometer data. The heavy line indicates the "Brune"

spectrum as in Figure 9. The spectrum indicates a seismic moment of about 8.106

Nm, and a corner frequency of 1.0 Hz (See Table 1).

Fig. 11: Source displacement vs. frequency for Event 3, 23 January 1989, based on

NORESS (415 kin) thrce-component broad band (IP and HIF) data. The heavy line

indicates the "Brune" spectrum as in Figure 9. The spectrum indicates a seismic

moment of about 6.10'6 Nm, and a corner frequency of 1.1 Hz (See Table 1).

Fig. 12: Fourier spectra of acceleration for NORESS three component (vertical, ra-

dial and transverse) ground motion seismograms (corrected for instrument response)

from the Event 2 (8 August 1988), together with theoretical amplitude predictions

(black squares) using the random-vibration technique discussed in the main text.

The predictions are based on a 'Brune' source model, a stress drop of 10 MPa,

geometrical spreading as in the source spectral analysis above, and anelastic attenu-

ation as given by Kvamme and Havskov (1989). Below are given similar spectra for

the preceding noise, showing an excellent signal-to-noise ratio of (60-70 dB). The

data are converted (differentiated) to acceleration before spectral estimation.

Fig. 13: Peak ground acceleration PGA (5 percent of critical damping) versus dis-

tance (with standard deviations) for an Ms 5.3 earthquake, as taken from the wave

attenuation relation of Dahle et al. (1989), together with observed PGA at stations

Molde and Sulen for Event 2 (8 August 1988).

Fig. 14: Processed acceleration records from Molde (left) and Sulen (right) for

Event 2 (8 August 1988). Below are plotted PSV (pseudo-relative velocity) re-

sponse spectra and predictions (smooth curve) based on the Dahle et al. (1989)

wave attenuation model.
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